
APPENDIX A
ARTIFACT APPENDIX

This artifact allows to reproduce the symbolic analysis
described in research paper “A Unified Symbolic Analysis of
WireGuard”. It contains:

1) Used versions of TAMARIN and PROVERIF.
2) The reference models of WireGuard.
3) The scripts to generate all evaluation files in PROVERIF,

to evaluate them, to compute DNF for all security
properties, all evaluation files in TAMARIN and the
scripts to evaluate them.

A. Access, Requirements, Installation, Checks & Benchmarks

All our files are publicly available and can be ac-
cessed online either through Gitlab repository (commit
hash: cefa5c14103badcf895495dff048919065cfb6a4), Docker
image (tag: 913b61a1087a7be9de7db2dadf980080ce9a06a934
a3f9734440dda2b8bfc34a) or Zenodo (https://doi.org/10.5281/
zenodo.10126619). Docker image contains all software pre-
installed and requires a running Docker Engine1. Gitlab repos-
itory contains an installation script that has been successfully
tested on a fresh Ubuntu Server 22.04.3 LTS, installed from
ISO image2.

1) Access through Gitlab and software installation:
$ git clone https://gitlab.limos.fr/palafour/ndss2024-AE364
$ cd ndss2024-AE364
$ sh run_install-dep-tam-pv.sh

2) Access through Docker (no installation required):
$ docker pull wganalysis/artifacts
$ docker run -it wganalysis/artifacts bash

3) Hardware requirements to run the artifacts:
• Configuration (C1) A standard laptop with 8 cores of

CPU 1.8 GHz and 16 Go of RAM. This architecture can
be used to run experiment E1 but shall not be used to
run experiments E2, E3, E4.

• Configuration (C2) A dedicated server, with at least 256
cores of CPU 1.5 GHz and 512 Go of RAM, on which
experiments E2, E3 and E4 shall be run.

4) Basic checks: to check whether the Docker started
successfully, or whether installation through Gitlab worked,
execute:
$ tamarin-prover test

In the end you should see the following:
*** TEST SUMMARY ***
All tests successful.
The tamarin-prover should work as intended.

:-) happy proving (-:

If result is tamarin-prover: not found, open a new
terminal and repeat previous command. Then execute:
$ eval $(opam env --safe); proverif -help

In the beginning you should see the following:
Proverif 2.04. Cryptographic protocol verifier

1https://docs.docker.com/engine/install/
2https://ubuntu.com/download/server

5) Benchmarks:
• Experiment E1 can be run on a standard laptop of

configuration C1, results are obtained in 20 minutes.
• Experiments E2, E3 and E4 shall be run on a server

of configuration C2. For this architecture, results are
available in 9 hours for E2, 12 hours for E3 and 2 hours
for E4.

B. Major Claims

We assess the following security properties:
• Agreement properties: agreement of RecHello mes-

sage (from Responder to Initiator), agreement of first
TransData message (from Initiator to Responder),
agreement of next TransData messages (from Initia-
tor to Responder and from Responder to Initiator), for
WireGuard with or without cookies and for two fixed
versions of WireGuard.

• Secrecy properties: secrecy and PFS of session key be-
fore derivation (named k6 in protocol description), from
Initiator’s and Responder’s view, secrecy and PFS of
derivated keys (named Ci and Cr), from Initiator’s and
Responder’s view, for WireGuard with or without cookies
and for two fixed versions of WireGuard.

• Anonymity, for WireGuard with or without cookies and
for two fixed versions of WireGuard.

Agreement and secrecy for WireGuard without cookie are
verified in experiment E2, fixes for anonymity are verified
in experiments E3 and E4. Experiment E1 concerns PFS of
session key before derivation from Initiator’s view.

C. Evaluation

1) Experiment (E1): [PFS of session key before derivation
from Initiator’s view for WireGuard without cookie] [5 human-
minutes + 15 compute-minutes on configuration C1] this
experiment corresponds to Section 6.A of our research paper.
Execute:
$ cd process_complete_minimal_tests
$ sh run_all.sh

This will launch, sequentially:
• Generation of PROVERIF files from reference .spthy

files. For this evaluated property, there are 64 files.
• Evaluation of all PROVERIF files.
• Computation of DNF from all evaluated PROVERIF files.
• Evaluation of dedicated TAMARIN file.

TAMARIN file for this property is available in folder
__tamarin__. It contains one lemma named
Secrecy_IK6_PFS, which is deduced from previous
DNF. Output should be (numbers correspond to computation
duration and may be different):
Generate ProVerif queries
Generate ProVerif files
0:00.79
[WARNING] Running as root is not recommended
Evaluate ProVerif queries for isk6 pfs
2:16.28
Generate CNF and DNF files
0:00.46

1

https://doi.org/10.5281/zenodo.10126619
https://doi.org/10.5281/zenodo.10126619
https://docs.docker.com/engine/install/
https://ubuntu.com/download/server

Evaluate Tamarin Lemma
[Saturating Sources] Step 1/5
[Saturating Sources] Step 2/5
[Saturating Sources] Step 3/5
[Saturating Sources] Step 4/5
[Saturating Sources] Step 5/5
[Saturating Sources] Saturation aborted, more than 5
iterations. (Limit can be change with -s=)
2:28.59

Once computation is finished, directory process_comple
te_minimal_tests contains new folders, named
secrecy_isk6_pfs and results. Folder secrecy_
isk6_pfs contains all generated PROVERIF files (*.pv),
all corresponding evaluation files (*.pv.log) and all
sub-folders used to compute DNF, as described in research
paper, Section 6. Folder results contains 2 files:

• wireguard_secrecy_isk6_pfs.cnfdnf
• wireguard_secrecy_isk6_pfs_all_trusted.tamarin

Content of .cnfdnf file corresponds to the content of
Table 2 of research paper, for a part of DNF3⋆, which is
(R∗

s∧R∗
u∧Rx)∨(R∗

s∧R∗
v∧Ry)∨(R∗

c∧R∗
s∧Rx∧Ry). Content

of .tamarin file corresponds to the log files of TAMARIN
resolution for the property. Execute:
$ cd results
$ grep "verified\|falsified" *.tamarin

Output should be:
Secrecy_IK6_PFS (all-traces): verified (268 steps)

2) Experiment (E2): [Agreement and Secrecy for Wire-
Guard without cookie] [5 human-minutes + 9 compute-hours
on configuration C2] this experiment corresponds to Section
6.A of our research paper. Execute:
$ cd process_complete_without_cookie
$ sh run_all.sh

This will launch, sequentially:
• Generation of PROVERIF files from reference .spthy

files (up to 4860 files per property).
• Evaluation of all PROVERIF files.
• Computation of DNF from all evaluated PROVERIF files.
• Evaluation of dedicated TAMARIN file.

Output message is as in experiment E1. Our experiment
and obtained durations, on a server of configuration C2 are
detailed on our Gitlab repository (A-A1). After computa-
tion, directory process_complete_without_cookie
contains new folders, secrecy_*, agreement_*. These
contain all generated PROVERIF files (*.pv), all correspond-
ing evaluation files (*.pv.log) and all sub-folders used to
compute DNF. New folder results contains two types of
files: *.cnfdnf and *.tamarin. Link between content of
Table 2 of research paper and *.cnfdnf files is described
in Table I. Each *.spthy file in folder __tamarin__
is dedicated to a security property and evaluates one lemma
which is deduced from previously computed DNF1⋆, DNF2⋆,
DNF3⋆, DNF4⋆. Each *.tamarin file in folder results
is the log file of their evaluation. Execute:
$ cd results
$ grep "verified\|falsified" *.tamarin

DNF Computed files

DNF1, DNF1⋆ wireguard_agreement_rechello.cnfdnf

wireguard_agreement_transport_rtoi.cnfdnf

DNF2, DNF2⋆ wireguard_agreement_confirm.cnfdnf

wireguard_agreement_transport_itor.cnfdnf

DNF3, DNF3⋆ wireguard_secrecy_isk6.cnfdnf

wireguard_secrecy_isk6_pfs.cnfdnf

wireguard_secrecy_isk_itor.cnfdnf

wireguard_secrecy_isk_itor_pfs.cnfdnf

wireguard_secrecy_isk_rtoi.cnfdnf

wireguard_secrecy_isk_rtoi_pfs.cnfdnf

DNF4, DNF4⋆ wireguard_secrecy_rsk6.cnfdnf

wireguard_secrecy_rsk6_pfs.cnfdnf

wireguard_secrecy_rsk_itor.cnfdnf

wireguard_secrecy_rsk_itor_pfs.cnfdnf

wireguard_secrecy_rsk_rtoi.cnfdnf

wireguard_secrecy_rsk_rtoi_pfs.cnfdnf

TABLE I
LINK BETWEEN COMPUTED FILES AND TABLE 2 FROM RESEARCH PAPER

Each line should contain (all-traces):verified ex-
cept for inithello_untrusted_pki which should con-
tain (all-traces):falsified.

3) Experiment (E3): [Anonymity for fixed version of
WireGuard without cookie, based on guv)] [5 human-minutes
+ 12 compute-hours on configuration C2] this experiment
corresponds to Section 6.B of our research paper. Execute:
$ cd process_complete_with_fix_guv
$ sh run_evaluate-anonymity.sh

This generates 8 PROVERIF files, named Anonymity_with
_fix_guv_*, with * = _Rs, _Rc, _Ru, _Rv, _Rx,
_Ry, _RsRy, _WITHOUT_R. Execute:
$ cd __anonymity__
$ grep "RESULT" *.log

Output should be:
• For files _Ry, _Rs, _RsRy and _WITHOUT_R, RESULT
Observational equivalence is true.

• For all other files, RESULT Observational

equivalence cannot be proved.

4) Experiment (E4): [Anonymity for fixed version of
WireGuard without cookie, based on psk)] [5 human-minutes
+ 2 compute-hours on configuration C2] this experiment
corresponds to Section 6.B of our research paper. Execute:
$ cd process_complete_with_fix_psk
$ sh run_evaluate-anonymity.sh

This generates 9 PROVERIF files, named Anonymity_with
_fix_guv_*, with * = _Rs, _Rc, _Ru, _Rv, _Rx,
_Ry, _RcRy, _RuRy, _WITHOUT_R. Execute:
$ cd __anonymity__
$ grep "RESULT" *.log

Output should be:
• For files _Rc, _Ru _Ry, _RcRy, _RuRy and
_WITHOUT_R, RESULT Observational equiva

lence is true.
• For all other files, RESULT Observational

equivalence cannot be proved.

2

	Appendix A: Artifact Appendix
	Access, Requirements, Installation, Checks & Benchmarks
	Access through Gitlab and software installation
	Access through Docker (no installation required)
	Hardware requirements to run the artifacts
	Basic checks
	Benchmarks

	Major Claims
	Evaluation
	Experiment (E1)
	Experiment (E2)
	Experiment (E3)
	Experiment (E4)

