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Abstract—WireGuard [22], [21] is a Virtual Private Network
(VPN), presented at NDSS 2017, recently integrated into the
Linux Kernel [53] and paid commercial VPNs such as NordVPN,
Mullvad and ProtonVPN [52]. It proposes a different approach
from other classical VPN such as IPsec [28] or OpenVPN [33]
because it does not let users configure cryptographic algorithms.
The protocol inside WireGuard is a dedicated extension of
IKpsk2 protocol from Noise Framework [47]. Different analyses
of WireGuard and IKpsk2 protocols have been proposed, in
both the symbolic and the computational model, with or without
computer-aided proof assistants. These analyses however consider
different adversarial models or refer to incomplete versions
of the protocols. In this work, we propose a unified formal
model of WireGuard protocol in the symbolic model. Our model
uses the automatic cryptographic protocol verifiers SAPIC+,
PROVERIF and TAMARIN. We consider a complete protocol
execution, including cookie messages used for resistance against
denial of service attacks. We model a precise adversary that
can read or set static, ephemeral or pre-shared keys, read or
set ecdh pre-computations, control key distribution. Eventually,
we present our results in a unified and interpretable way,
allowing comparisons with previous analyses. Finally thanks
to our more model, we confirm a flaw on the anonymity of
the communications and point an implementation choice which
considerably weakens its security. We propose a remediation that
we prove secure using our models.

I. INTRODUCTION

During the last decades several complex cryptographic pro-
tocols have been constructed to offer more security and more
services to the users. In the same time, automated analysis has
made its way into mainstream security practice and many tools
for automatic formal verification of cryptographic protocols
have been designed and are in continuous progress [4]. For
instance, the design of TLS 1.3 took several years and many
formal security analyses have been done on the subject [7]–
[10], [17], [19], [27], [29], [40], [41], [46], [48]. Still some
attacks exist on TLS 1.3 [13], [45], [46]. The same story
also occurs with IKE [11], [14], [18], [26], [36]. These
two examples show that security assessment of cryptographic
protocols is a process, in which all works are used as basis
for the following ones, which are more precise. Tools such as
PROVERIF and TAMARIN, used to assess these protocols, are
given an abstract description of the protocol and its security

properties, and give a proof that no attack exists within their
model or find an attack violating the security properties.
Symbolic verification tools do not directly operate on the
cryptographic definition of cryptographic primitives but on
an approximation and consider abstract definitions of their
behaviors. Those abstractions make some attacks impossible
to capture for some tools, because sometimes the tool is
not able to deal with some algebraic properties which let
those attacks hidden. Likewise, the symbolic model of the
protocol itself or the modeling of the security property may
not be precise enough and therefore the tool cannot find
attacks. All these successive works constitute important steps
to have more secure communication protocols as it is shown
in [46]. In this paper we focus on WireGuard, a recent VPN,
largely deployed, used and formally analyzed. Our aim is to
propose a new symbolic model that aggregates and enriches
all existing models, in terms of messages, adversaries and
properties modeling.

A. Our Contribution

Previous analyses assessment and new model proposal.
We first review previous analyses of WireGuard and IKpsk2
and we point disparities between assessed properties, modeled
protocols and adversary models: symbolic analyses involve
different models and different proof assistants (PROVERIF and
TAMARIN), computational analyses are manual or use proof
assistant (CRYPTOVERIF). This allows to identify the most
complete analyses: although incomplete, model from [42] is
the closest to WireGuard protocol and threat model from [30]
captures the largest number of adversarial capabilities. We
propose a new symbolic model that enriches these analyses
with a more complete protocol execution and more precise
adversaries. We use the tool SAPIC+: our model is fully based
on processes and all properties are verified in PROVERIF and
in TAMARIN. Our adversaries can read or set static, ephemeral
or pre-shared keys, read or set ecdh pre-computations, and
control key distribution.

Anonymity. Our models allow us to confirm a flaw on
WireGuard related to anonymity. This flaw has previously been
identified in a computational analysis of the protocol [42], our
contribution is to prove it in a new symbolic analysis, based on
observational equivalence, on a more precise protocol model.
Importantly, this flaw allows an attacker to identify a VPN
user even if this user hides behind an access point, because
this flaw is cryptographic and does not rely on the underlying
transport protocol.
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Pre-computation. When setting an interface, Wire-
Guard implements a pre-computation of ecdh products
between static keys to speed up message consump-
tion. Peers have a specific field that contains pre-
computed ecdh products (e.g., in Linux Kernel, this
field is named precomputed_static_static and
in user-land Go implementation, this field is named
precomputedStaticStatic): at interface setting, all
peers public keys are read and ecdh product between interface
private key and public key is computed and field’s value is set
with computation’s result. This implementation optimization
increases attack surface as it allows an adversary to potentially
get access to ecdh pre-computation and therefore requires a
clear assessment.

uguvgv

(a) Safe environment.

uguvgv

(b) Unsafe environment.

Fig. 1: Potential vulnerability against Wireguard.

To illustrate importance of pre-computation assessment,
we describe in Fig.1 a potential vulnerability against one
WireGuard implementation. Default storage for static private
keys is in configuration file. Hence an attacker that accesses
these files compromises static private keys. To mitigate the
risk, static private keys can be generated and stored in smart
card which can perform ecdh operations. An example of
such card is OpenPGP embedded in YubiKey [44]. Security
objective in this context is to protect against an attacker that
has access to files and memory of the WireGuard process,
but shall not be able to compromise static keys stored in
smart card. In this implementation, OpenPGP on YubiKey
is used to generate and store a static private key, because a
support for ecdh is mandatory, as recent YubiKey has. Then
Go version of WireGuard is used, which provides a full user-
space implementation. Such an architecture aims at mitigating
memory leakage, as static key is protected by the smart card.
Once interface is mounted, an attacker could however access
ecdh product in process memory, due to pre-computation.
Precisely, we consider an Initiator of static private key u,
embedded in a smart card , which uses a WireGuard client

and a network configuration that contains Responder’s
public key gv . When the smart card is plugged and WireGuard
interface is mounted, ecdh product guv is pre-computed in
memory . In a safe environment, depicted in Fig.1a, this
pre-computation is not compromised, however, in an unsafe
environment, depicted in Fig.1b, an attacker can corrupt
memory and pre-computed ecdh product guv , while private
key u in smart card remains safe. Our contribution is
to consider a symbolic adversary model that enhances mo-
del from [30] with pre-computations, adapted to a complete
protocol model of WireGuard. Note that compromise of ecdh

pre-computation is weaker than compromise of private static
keys: if adversary has access to a private key, adversary knows
ecdh product, however, the opposite is false. We show that in
contradiction with this, an adversary that has access to pre-
computation is as powerful as an adversary that has access to
static private keys.

Mitigation. We finally propose and prove recommendations
that counter the attack against anonymity and enhance security
of protocol implementation.

B. Related Work

WireGuard. Computer-aided cryptography has allowed the
analysis of a large number of protocols, in both the symbolic
and the computational models [4]. In line with this, assessment
of WireGuard through rigorous security analysis is at the core
of the product: WireGuard has itself been analyzed in the
symbolic model with TAMARIN [23], in the computational
model with CRYPTOVERIF [42] and a (non computer-aided)
analysis has been proposed in [24]. WireGuard uses a dedi-
cated protocol that relies on an ecdh key exchange from the
Noise framework [47], named IKpsk2. Protocols from this
framework have also been analyzed in the symbolic model:
complete analyses have been proposed with PROVERIF [35]
and with TAMARIN [51], which allowed to confirm claimed
security properties from the framework. A complementary
analysis is proposed in [30], also with TAMARIN. In line
with the (non computer-aided) analysis done on WireGuard,
an analysis of Noise protocols in the computational model is
presented in [25]. In the context of Post-Quantum security, [2]
proposes a slight modification of WireGuard and [32] presents
a new protocol, based on WireGuard original specification,
and revisits symbolic analysis of [23] and computational one
of [24].

SAPIC+. This is a new tool, unifying the use of PROVERIF
and TAMARIN for symbolic analyses that has recently been
used to assess EDHOC protocol [34]. Our contribution is to
propose a new model of WireGuard protocol in SAPIC+ that
enriches all previous symbolic models and allows to verify
security properties in both PROVERIF and TAMARIN. We
propose a methodology which combines all tools and benefits
from the strength of each.

C. Outline

Section II proposes an overview of symbolic model, in-
cluding insights related to the applied Π-Calculus, SAPIC+,
PROVERIF and TAMARIN provers. Section III provides a high
level overview of WireGuard. In Section IV we assess previous
analyses and finally in Section V we describe our new model.
In Section VI, we present our results.

II. SYMBOLIC MODEL

In the symbolic model, as explained in [12], [16], crypto-
graphic primitives are considered as perfect, modeled by func-
tion symbols in an algebra of terms, possibly with equations.
Messages are terms on these primitives and the adversary can
symbolically compute new terms only using these primitives
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(and equations that model them). In particular, an adversary
can decipher an encrypted term only if it has access to
the corresponding secret key. In this model, the attacker is
considered to have complete control of the network: he can
eavesdrop, remove, substitute, duplicate and delay messages
that the parties are sending one another, and insert messages
of his choice on the public channels (Dolev-Yao attacker [20]).

Several tools exist for verifying security protocols in the
symbolic model [4]. The applied Π-Calculus, an extension of
the Π-Calculus, is among the most used languages for mo-
deling security protocols and constitutes the input language of
many tools. For the full details about its syntax and semantics,
see [1]. The protocol verifier SAPIC+ [15] takes as input a
protocol description in (a variant of) the applied Π-Calculus
similar to PROVERIF and security properties specifications ex-
pressed exactly as in TAMARIN. Through its exports, SAPIC+

supports the union of the theories supported by TAMARIN and
PROVERIF.

query k; event(Accept(k)) =⇒ event(Honest(k))

lemma A: ”All k#i.Accept(k)@i =⇒ Ex #j.Honest(k)@j&j < i”

Fig. 2: PROVERIF query and TAMARIN lemma.

In PROVERIF protocols are described in the applied Π-
Calculus. The grammar supports events which are annotations
that do not change processes’ behavior, but are inserted at pre-
cise locations to allow reasoning about protocols’ executions.
For instance, to express that, whenever the process accepts a
key k, then k must have been honestly generated, we write
query as in Fig.2. It requires that each occurrence of the
event Accept is preceded by an earlier occurrence of the event
Honest on every execution trace. The tool can handle many
cryptographic primitives (encryption, signature, hash function,
Diffie-Hellman Key agreement) specified as rewrite rules or
equations. PROVERIF can also handle an unbounded number
of sessions and an unbounded message space. It is able to
prove Traces properties: Secrecy (as reachability properties:
the adversary cannot obtain the secret), Agreement (as corre-
spondence properties: if an event has been executed, then other
events have been executed as well) and Equivalences between
processes (as observational equivalence: the adversary cannot
distinguish two processes).

In TAMARIN protocols are described using multiset rewrite
(MSR) rules of the form: [lhs] − [actions] → [rhs]. They
describe the manipulation of the protocol state represented as a
multiset of facts. Intuitively, for such a rule to fire, we require
the (multiset of) facts on the left-hand side lhs. Then these
facts are deleted, and the facts on the right-hand side rhs are
added. The actions are facts that annotate rules, and will be
used to specify properties. TAMARIN uses a temporal logic
to express security properties about the protocol executions,
modeled as traces, which are the sequence of actions triggered
by MSR rules. For instance, to express the same property
stated in the previous paragraph, we write lemma as in Fig.2.
It requires that if an Accept action was raised for k at any

time point i of the trace, then the Honest action must have
been raised for the same value k at a previous time point j.
Trace properties are expressed as lemmas that must be valid
on all traces. Equivalences between processes are expressed
as observational equivalence as well.

III. WIREGUARD DESCRIPTION

We present WireGuard [21] and also assess the link between
WireGuard and Noise protocols [47].

A. WireGuard Protocol
Notations. Bistrings are delimited with square brackets

[· · · ], ∅ is the empty bitstring, of length 0, if A and B are
bitstrings, [A∥B] is the concatenation of A and B, |A| is the
length of A and {A} is an encryption of A; 0,1,2,3,4 denote
bitstrings that correspond to bytes 0, 1, 2, 3 and 4, respectively;
if n is an integer, An is the n-bytes concatenation [A∥ · · · ∥A].

Overview. WireGuard involves two actors: Initiator and
Responder, also referred to as peers. The protocol is com-
posed of two phases: a key exchange phase and a trans-
port phase. Key exchange phase involves two messages,
InitHello and RecHello, transport phase involves one
message, TransData. WireGuard involves a fourth message
CookieRep, for protection against denial of service attacks.

WireGuard does not define the notions of client and server,
peers can indifferently play the role of Initiator or Responder, a
peer that starts a session is considered as an Initiator, the other
peer the Responder. Key exchange is considered complete after
the first message from the transport phase (which must be a
message from Initiator), hence the protocol involves a 1.5-
RTT key exchange. Also explained in [21], protocol requires
an out of band data share, not considered as part of the
protocol. A session between two peers refers to a successful
key exchange and the use of this key for data transport, a new
exchange means a new session.

Cryptographic Primitives. WireGuard uses a a cyclic
group G, of generator g and a closed set of cryptographic
primitives: a hash function h, two message authentication
codes hmac and mac, three key derivations kdf1, kdf2, kdf3,
two authenticated encryption algorithms aead and xaead and a
padding scheme pad. Initiator and Responder use the following
material: u, U = gu is Initiator static key pair, x,X = gx is
Initiator ephemeral key pair, v, V = gv is Responder static
key pair, y, Y = gy is Responder ephemeral key pair, ts is a
timestamp, psk is an optional pre-shared key and C, I and M
are public constants. In WireGuard, these are instantiated as
follows:

• G is the group of points of curve Curve25519 [6], [38],
of base point g.

• h ← h(I) is the computation of a 32-byte fingerprint h
from input I with hash function Blake2s [3].

• M ← hmac(K, I) is the computation of a 32-byte
message authentication code M from key K and input I
with hash function Blake2s as described in [31].

• M ← mac(K, I) is the computation of a 16-byte message
authentication code M from input I and key K with
Blake2s hash function, as described in [50].
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• τ1 ← kdf1(K, I), (τ1, τ2) ← kdf2(K, I) and (τ1, τ2, τ3)
← kdf3(K, I) are key derivations from [37]. They com-
pute 32-byte t-uples from key K and input I:
– τ0 = hmac(K, I); τ1 = hmac(τ0,1), kdf1(K, I) = τ1;
– τ2 := hmac(τ0∥τ1,2), kdf2(K, I) := (τ1, τ2);
– τ3 := hmac(τ0∥τ1∥τ2,3), kdf3(K, I) := (τ1, τ2, τ3).

• (C, T ) ← aead(K,N,P,A) is the encryption algorithm
AEAD_CHACHA20_POLY1305 from [39], which itself
combines ChaCha20 and Poly1305 algorithms. From a
key K, a 12-byte nonce N , a plaintext P and an au-
thentication data A, it computes a ciphertext C of length
|P | bytes and a 16-bytes authentication tag T , hence its
total byte-length is |P | + 16. The 12-bytes nonce N is
04 followed by a 8-byte counter.

• (C, T )← xaead(K,N,P,A) is the encryption algorithm
AEAD_XCHACHA20_POLY1305 which is a variant of
AEAD_CHACHA20_POLY1305 where the nonce N is a
random 24-bytes string.

• P∥016⌈|P |/16⌉−|P | ← pad(P ) is the padding algorithm.
Messages content. Messages of WireGuard protocol are

depicted in Fig.3 and Fig.4. InitHello message is
[1∥03∥si∥X∥{U}∥{ts}∥maci1∥maci2], where 1 and 03 are
constant bitstrings, si is a random session identifier, X is
Initiator ephemeral key, {U} is encrypted Initiator’s static
public key, {ts} is an encrypted timestamp, maci1 is a first
message authentication code. Depending on CookieRep
message, maci2 takes two values: either 016 or a sec-
ond message authentication code. Message RecHello is
[2∥03∥sr∥si∥Y ∥{∅}∥macr1∥macr2], where 2 and 03 are con-
stant bitstrings, sr, si are session identifiers, Y is Re-
sponder ephemeral key, {∅} is an encryption of empty
string, macr1 and macr2 are similar as for InitHello
message. Message TransData from Initiator to Respon-
der is [3∥03∥sr∥ik∥{pad(Pik)}], from Responder to Initiator
is [3∥03∥si∥rk∥{pad(Prk)}], where 3 and 03 are constant
bitstrings, si and sr are session identifiers, {pad(Pik)} and
{pad(Prk)} are padded and encrypted payloads. Finally, mes-
sage CookieRep is [4∥03∥si∥ρ∥{τ}], where 4 and 03 are
constant bitstrings, si is a session identifier, ρ is a random
nonce and {τ} is an encrypted cookie.

G, u, U = gu, x,X = gx, ts G, v, V = gv, y, Y = gy

U

V

[1∥03∥si∥X∥{U}∥{ts}∥maci1∥016]

[2∥03∥sr∥si∥Y ∥{∅}∥macr1∥016]

[3∥03∥sr∥0∥{pad(Pi0)}]

[3∥03∥sr∥ik∥{pad(Pik)}] [3∥0∥si∥rk∥{pad(Prk)}]

Fig. 3: WireGuard (without cookies).

Message computation. To compute InitHello, Initiator

uses public values C and I, generates a random session
identifier si, computes successive hash values ht, key values
kt and chaining values ct: ck = h(C), h0 = h(ck∥I),
h1 = h(h0∥V ), c0 = kdf1(ck,X), h2 = h(h1∥X),
(c1, k1) = kdf2(c0, g

xv), {U} = aead(k1, 0, h2, U),
h3 = h(h2∥{U}), (c2, k2) = kdf2(c1, g

uv), {ts} =
aead(k2, 0, h3, ts), h4 = h(h3∥{ts}). Finally, a message
authentication code is appended to the message, computed
on the bitstring [1∥03∥si∥X∥{U}∥{ts}], with key
h(M∥V ) (i.e., key is derived from public value M
and Responder public key V ) and InitHello =
[1∥03∥si∥X∥{U}∥{ts}∥mac(h(M, V ), [1∥ · · · ∥{ts}])∥016].
At reception, Responder performs the necessary computations
to obtain the same hash and key values, decrypts {U}, checks
that U is legitimate and decrypts {ts}.

To compute RecHello, Responder generates a random
session identifier sr, computes the next hash values ht,
key values kt and chaining values ct: c3 = kdf1(c2, Y ),
h5 = h(h4∥Y ), c4 = kdf1(c3, g

xy), c5 = kdf1(c4, g
uy),

(c6, hrt, k6) = kdf3(c5, 0) if psk = ∅, (c6, hrt, k6) =
kdf3(c5, psk) if psk ̸= ∅, h6 = h(h5∥hrt), {∅} =
aead(k6, 0, h6,∅), h7 = h(h6∥{∅}). Similarly as for
InitHello, a message authentication code is appended to
the message, computed on the bitstring [2∥03∥sr∥si∥Y ∥{∅}],
with key h(M, U) (i.e. key is derived from public value
M and Initiator public key U ). Finally, RecHello =
[2∥03∥sr∥si∥Y ∥{∅}∥mac(h(M, U), [2∥ · · · ∥{∅}])∥016]. At
reception, Initiator performs the necessary computations to
obtain the same hash and key values, decrypts {∅} and checks
that the obtained value is ∅.

After InitHello and RecHello, both Initiator and
Responder share a common session key k6. From this key
they derive two keys (Ci, Cr) = kdf2(k6,∅) and use these
keys, respectively, to protect data from Initiator to Responder
and from Responder to Initiator.

To compute TransData, Initiator takes received Respon-
der session identifier sr, current counter value ik, computes
{pad(Pik)} = aead(Ci, ik, pad(Pik),∅) where Pik is the
plaintext sent at this step and pad(Pik) is the padded plaintext.
Responder performs same computation with Initiator session
identifier si, current counter value rk and plaintext Prk .
Note that first transport message is always from Initiator to
Responder. For WireGuard, counter maximal value is 260

(i.e at most 260 transport messages are encrypted with same
session key).

WireGuard protocol embeds a protection against de-
nial of service, based on CookieRep messages. To
build such message, WireGuard uses information from
transport layer, as messages are transported in UDP
datagrams [49]: InitHello message is transported in
packet [IPi∥IPr∥Porti∥Portr∥InitHello] where IPi

and Porti are public IP and port for Initiator and IPr

and Portr are public IP and port for Responder. Re-
sponder generates a random value Rm, uses IPi and
Porti from incoming packet and computes the cookie
value τ = mac(Rm,IPi∥Porti). This cookie is then en-
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G, u, U = gu, x,X = gx, ts G, v, V = gv, y, Y = gy

U

V

[1∥03∥si∥X∥{U}∥{ts}∥maci1∥016]

[4∥03∥si∥ρ∥{τ}]

G, u, U = gu, x̄, X̄ = gx̄, t̄s

[1∥03∥si∥X̄∥{U}∥{t̄s}∥māci1∥māci2]

[2∥03∥sr∥si∥Y ∥{∅}∥macr1∥016]

[3∥03∥sr∥i0∥{pad(Pi0)}]

[3∥03∥sr∥ik∥{pad(Pik)}] [3∥03∥si∥rk∥{pad(Prk)}]

Fig. 4: WireGuard (with cookies).

crypted: Responder generates a random nonce ρ and computes
{τ} = xaead(h(V ),maci1, ρ, τ ), where maci1 is extracted
from InitHello message. At reception, Initiator decrypts
τ , generates a new InitHello message, with same ses-
sion identifier si, a new ephemeral key pair x̄, X̄ = gx̄,
a new timestamp t̄s and a new authentication code māci1
as before, except that now it appends a second authentica-
tion code to the message, computed on the first 7th fields
[1∥03∥si∥X̄∥{U}∥{t̄s}∥māci1], with key the cookie value τ .
At reception, Responder verifies this additional authentication
code and continues the protocol as before.

B. WireGuard and Noise Protocols

The Noise framework [47] defines a set of key exchange
protocol, among which are the protocols named IK, KK,
IKpsk2 and KKpsk2, presented in Fig.5. These four pro-
tocols are referenced in WireGuard documentation and source
code as the basis for the key exchange protocol inside Wire-
Guard.

WireGuard uses IKpsk2 (and not IK, nor KK, nor
KKpsk2). At first glance, as pointed in [2], it seems that
WireGuard is closer to KKpsk2 than IKpsk2 because of
the initial out of band public keys exchange. However, in
KKpsk2, Initiator knows to whom it sends InitHello mes-
sage and Responder knows from whom it receives it, whereas
in IKpsk2, Initiator knows to who it sends InitHello
message but Responder does not know from whom it receives
it. An application built upon KKpsk2 shall ensure both parties
know to whom they communicate before starting key ex-
change, whereas an application built upon IKpsk2 can accept
Responder does not know a priori who sends an InitHello
message, but Responder shall be able to assess if received
message is acceptable. This is exactly the path followed by
WireGuard: each party has a set of acceptable peers (a list
of acceptable public keys), but discovers who initiates a key
exchange and checks it is acceptable during key exchange.
WireGuard lets peers use an optional pre-shared key that shall

G, u, U = gu, x,X = gx G, v, V = gv, y, Y = gy

U

V

[X∥{m0}]

[Y ∥{m1}]

[ik∥{pad(Pik)}] [rk∥{pad(Prk)}]

(a) KK and KKpsk2.
G, u, U = gu, x,X = gx G, v, V = gv, y, Y = gy

V

[X∥{U}∥{m0}]

[Y ∥{m1}]

[ik∥{pad(Pik)}] [rk∥{pad(Prk)}]

(b) IK and IKpsk2.

Fig. 5: KK, KKpsk2, IK and IKpsk2 protocols, where blue
bold denotes optional fields.

be shared beforehand. When this option is not chosen (which is
described as psk = ∅), WireGuard still implements IKpsk2:
a difference between IK and IKpsk2 is that for IKpsk2
ephemeral keys X and Y are included in the derivation of the
session key, which is not the case for IK. This corresponds
to the computation of chaining values c0 = kdf1(ck,X) and
c3 = kdf1(c2, Y ) (see below) which are specific to IKpsk2.
As a consequence, the protocol from Noise framework we
compare to WireGuard is IKpsk2. We need however to point
similarities and differences.

Similarities between WireGuard and IKpsk2. Defini-
tion of IKpsk2 uses the same set of abstract algorithms
as WireGuard (a cyclic group G, of generator g, a hash
function h, message authentication codes hmac and mac,
key derivations kdf1, kdf2, kdf3, authenticated encryption al-
gorithms aead and a padding scheme pad) except that IKpsk2
does not instantiate them. It is up to the application based
on IKpsk2 to choose cryptographic primitives, as Wire-
Guard does. Computation of keys for IKpsk2 is similar
to WireGuard: with message m0, Initiator computes succes-
sive hash values ht, key values kt and chaining values ct
as follows: ck = h(C), h0 = h(ck∥I), h1 = h(h0∥V ),
c0 = kdf1(ck,X), h2 = h(h1∥X), (c1, k1) = kdf2(c0, g

xv),
{U} = aead(k1, 0, h2, U), h3 = h(h2∥{U}), (c2, k2) =
kdf2(c1, g

uv), {ts} = aead(k2, 0, h3,m0), h4 = h(h3∥{m0}).
Similarly, with message m1, Responder computes the next
hash values ht, key values kt and chaining values ct as
follow: c3 = kdf1(c2, Y ), h5 = h(h4∥Y ), c4 = kdf1(c3, g

xy),
c5 = kdf1(c4, g

uy), (c6, hrt, k6) = kdf3(c5, 0) if psk = ∅,
(c6, hrt, k6) = kdf3(c5, psk) if psk ̸= ∅, h6 = h(h5∥hrt),
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{m1} = aead(k6, 0, h6,m1), h7 = h(h6∥{m1}).
IKpsk2 relies on an initial out of band pre-message from

Responder to Initiator in which Responder sends its static
public key and conversely Initiator sends its static public key
in first message. IKpsk2 does not specify how these keys
are validated: indeed, Noise specification states it’s up to the
application to determine whether the remote party’s static
public key is acceptable. WireGuard specification is similar as
it states WireGuard rests upon peers exchanging static public
keys with each other.

Differences between WireGuard and IKpsk2. Wire-
Guard involves a 1.5-RTT key exchange: after messages
InitHello and RecHello are correctly sent and received,
a first TransData shall be sent from Initiator. After this first
TransData message any peer can send other TransData
messages. This feature is however not mandatory in Noise
protocols and hence in IKpsk2: in IKpsk2, after handshake,
transport messages can be either from Initiator to Responder or
from Responder to Initiator. This feature is captured differently
in previous analyses.
IKpsk2 first message is [X∥{U}∥{m0}], whereas Wire-

Guard InitHello message is [1∥03∥si∥X∥{U}∥{ts}
∥maci1∥maci2], where maci2 can equal 016. Hence with
m0 = ts, messages are similar, however they differ:
InitHello has header [1∥03], embeds session identifier
si and fields maci1 and maci2. Similarly, IKpsk2 second
message is [Y ∥{m1}], whereas WireGuard RecHello is
[2∥03∥sr∥si∥Y ∥{∅}∥macr1∥macr2]. Hence with m1 = ∅,
messages are similar but differ due to header, session iden-
tifiers and macr1 and macr2 fields. Finally transport messages
also differ as WireGuard TransData includes header, ses-
sion identifier and transmits counter in clear. Note that Noise
specification [47] allows this clear counter transmission.This
transmission is captured differently in previous IKpsk2 ana-
lyses. Due to these differences, we consider IKpsk2 as an
incomplete version of WireGuard.

IV. PREVIOUS ANALYSES ASSESSMENT

In this section we present the security properties analyzed
in previous studies, modeled protocols and adversary models.

A. Security Properties of Previous Analyses

WireGuard. Symbolic analyses of WireGuard are proposed
in [23] and in [32] (for Post-Quantum WireGuard), both with
TAMARIN prover. These two analyses are close as the one
from [32] is an update of the one from [23] to account for Post-
Quantum version. First [23] symbolically defines Correctness,
Key Agreement, Key Secrecy, Session Uniqueness and Iden-
tity Hiding, Key Secrecy and weak Perfect Forward Secrecy
as trace properties. With a model updated from [23], [32]
symbolically defines Session Key Secrecy, Perfect Forward Se-
crecy,Session Key Uniqueness, Entity Authentication, Identity
Hiding and Deny of Service Protection, also as trace properties.
Difference between weak Perfect Forward Secrecy (from [23])
and Perfect Forward Secrecy (from [32]) is that the former
is defined for a passive adversary while the latter is for an

active adversary. Session Key Secrecy and Key Secrecy refer
to the same property, which means that the session key is not
known to the adversary. Similarly, Session Uniqueness and
Session Key Uniqueness refer to the same property, which
means that different sessions will have different keys. Each
security property is tested against a unique key compromise
scenario, for which the test succeeds, however this has the
strong limitation that other key compromise scenarios are not
included in the analyses. Our contribution is to provide an
assessment for a large set of key compromise scenarios.
IKpsk2. Symbolic analyses of IKpsk2 are proposed

in [35] (with PROVERIF prover) and [30] (with TAMARIN
prover). [35] symbolically defines agreement and secrecy to
fit properties that are informally described in [47], as trace
properties. This leads to a restricted analysis as the resulting
definitions are only tested against a specific key compromise
scenario, hence this analysis shares the same default as [23]
and in [32]. As opposed to all previous analysis, [30] pro-
poses a different approach: analyze protocols from the Noise
framework against security properties which are not the ones
informally defined in [47] but are precise standard properties:
secrecy of payloads, non-injective agreement and injective
agreement on messages as defined in [43], and anonymity.
Secrecy and agreement are modeled as trace properties while
anonymity is modeled with observational equivalence. Further-
more, this analysis assesses a large set of key compromise
scenarios, including a fine-grained assessment of perfect for-
ward secrecy, which depends on both static keys but also on
pre-shared key. We use this analysis as a reference for our
WireGuard model in SAPIC+ and we enhance it to assess ecdh
pre-computation.

B. Models Assessment

We point disparities between previous models: different pro-
tocols are modeled, that all correspond to incomplete version
of WireGuard. Fig.6 describes these models. Fig.6a describes
our model that unifies and enriches all existing models. Note
that on left side of Fig.6, all models include initial key
distribution (which can be potentially compromised), while
on right side, all models assume a safe initial key distribution.

Fig.6b models a protocol composed of three messages:
two first messages InitHello, RecHello and a transport
message that does not correspond exactly to WireGuard as
the encrypted data is ∅, from Initiator to Responder. This
protocol is used in computational analysis of [24]. Fig.6c
models a protocol with pre-messages for static keys (U and V )
distribution, two first incomplete messages as they correspond
to InitHello and RecHello messages without message
authentication codes, a first transport message that is in one
direction and then transport messages TransData that can be
in either direction, with counter in clear. This model is used
in computational analysis of [42]. Fig.6d models a protocol
composed of three messages used in symbolic analysis of [23]:
two first messages that do not correspond exactly to Wire-
Guard as message authentication codes in both InitHello
and RecHello are replaced by constant bitstrings MAC1
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G, u, U = gu, x,X = gx G, v, V = gv, y, Y = gy

U

V

[1∥03∥si∥X∥{U}∥{ts}∥maci1∥016]

[2∥03∥sr∥si∥Y ∥{∅}∥macr1∥016]

[3∥03∥sr∥i0∥{pad(Pi0)}]

[3∥03∥sr∥ik∥{pad(Pik)}] [3∥03∥si∥rk∥{pad(Prk)}]

(a) Our WireGuard Model.

G, u, U = gu,V, x,X = gx G, v, V = gv,U, y, Y = gy

∅∅∅

∅∅∅

[1∥03∥si∥X∥{U}∥{ts}∥maci1∥016]

[2∥03∥sr∥si∥Y ∥{∅}∥macr1∥016]

[3∥03∥sr∥0∥{∅∅∅}]

∅∅∅ ∅∅∅

(b) WireGuard Model from [24].

G, u, U = gu, x,X = gx G, v, V = gv, y, Y = gy

U

V

[1∥03∥si∥X∥{U}∥{ts}∥∅∅∅∥∅∅∅]

[2∥03∥sr∥si∥Y ∥{∅}∥∅∅∅∥∅∅∅]

[3∥03∥sr∥i0∥{pad(Pi0)}]

[3∥03∥sr∥ik∥{pad(Pik)}] [3∥03∥si∥rk∥{pad(Prk)}]

(c) WireGuard Model from [42].

G, u, U = gu,V, x,X = gx G, v, V = gv,U, y, Y = gy

∅∅∅

∅∅∅

[1∥03∥si∥X∥{U}∥{ts}∥MAC1∥MAC2]

[2∥03∥sr∥si∥Y ∥{∅}∥MAC1∥MAC2]

[3∥03∥sr∥0∥{pad(Pi)}]

∅∅∅ ∅∅∅

(d) WireGuard Model from [23].

G, u, U = gu, x,X = gx, ts G, v, V = gv, y, Y = gy

U

V

[∅∅∅∥∅∅∅∥∅∅∅∥X∥{U}∥{m0}∥∅∅∅∥∅∅∅]

[∅∅∅∥∅∅∅∥∅∅∅∥Y ∥{m1}∥∅∅∅∥∅∅∅]

∅∅∅

[∅∅∅∥∅∅∅∥∅∅∅∥ik∥{pad(Pik)}] [∅∅∅∥∅∅∅∥∅∅∅∥rk∥{pad(Prk)}]

(e) IKpsk2 Model from [30].

G, u, U = gu,V, x,X = gx G, v, V = gv,U, y, Y = gy

∅∅∅

∅∅∅

[∅∅∅∥∅∅∅∥∅∅∅∥X∥{U}∥{m0}∥∅∅∅∥∅∅∅]

[∅∅∅∥∅∅∅∥∅∅∅∥Y ∥{m1}∥∅∅∅∥∅∅∅]

∅∅∅

[∅∅∅∥∅∅∅∥∅∅∅∥∅∅∅∥{pad(Pik)}] [∅∅∅∥∅∅∅∥∅∅∅∥∅∅∅∥{pad(Prk)}]

(f) IKpsk2 Model from [35].

Fig. 6: Comparison with other models, where for each model, blue bold denotes part of the protocol that is precisely defined
in our model but not in the model, hence for each model, differences with our model are highlighted.

and MAC2, followed by the original WireGuard transport
message TransData, from Initiator to Responder. Fig.6e
concerns IKpsk2: it models a protocol with pre-messages
for static keys (U and V ) distribution, two first messages
and transport messages that can be in either direction, with
counter in clear. It is used in symbolic analysis of [30]. Fig.6f
concerns IKpsk2 limited to the two first messages (without
initial key distribution) and transport messages that can be
in either direction, without counters. It is used in symbolic
analysis of [35].

It appears that the most precise model is the computa-

tional model of [42], which is however still incomplete. Our
contribution is an enriched model, more precise than the
computational one, for symbolic analysis.

C. Adversary Models

We also point disparities between adversary models in
Table I. [23], [35] and [24] all capture security against key
leakage and do not consider key modification, [30] and [42]
capture key leakage and key modification. Finally [35] cap-
tures static and pre-shared key compromise while all oth-
ers [23], [24], [30], [42], capture static, ephemeral and pre-
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Reference [23] [35] [30] [24] [42] [32] This work
WireGuard ✓ ✓ ✓ ✓ ✓

Noise IKpsk2 ✓ ✓

Model
Symbolic ✓ ✓ ✓ ✓ ✓

Computational ✓ ✓ ✓

Adversary model
Static private key access ✓ ✓ ✓ ✓ ✓ ✓ ✓

Static private key modification ✓ ✓ ✓

Ephemeral private key access ✓ ✓ ✓ ✓ ✓ ✓ ✓

Ephemeral key modification ✓ ✓

Pre-shared key access ✓ ✓ ✓ ✓ ✓ ✓ ✓

Pre-shared key modification ✓ ✓ ✓

Key distribution compromise ✓ ✓ ✓

Pre-computation access ✓

Pre-computation modification ✓

Proofs
Manual ✓ ✓

CRYPTOVERIF ✓

PROVERIF ✓ ✓

TAMARIN ✓ ✓ ✓ ✓

SAPIC+ ✓

TABLE I: Adversary Models and Proofs Techniques.

shared keys compromise. Symbolic model from [30], adapted
to IKpsk2, is the most precise as it captures key corruption
through leakage and modification. We enrich this model with
new adversarial capabilities related to pre-computation.

V. OUR SYMBOLIC MODEL

We propose a more detailed formal model of WireGuard in
the applied Π-Calculus, the language used by the automatic
cryptographic protocol verifier SAPIC+ [15].

A. Adversary Model

We adopt the methodology from [5] with some adaptations
to our protocol. An adversary model, as defined in [5], is a
combination of adversarial compromise. To outline our mo-
del, we consider four dimensions of adversarial compromise:
which kind of data is compromised, whose data it is, when
the compromise occurs and which type of compromise it is.
All combinations of capabilities have been considered in our
analysis. Some irrelevant combinations were discarded (See
Section VI).

The adversary initially knows the name of all agents be-
longing to the set agent and their corresponding long term
public static keys. Since WireGuard is a 2-party protocol, we
distinguish, without loss of generality, two types of agents:
an Initiator I and a Responder R. The set agent is reduced
to {I,R} thereof. Let ltkX and ekX be respectively the long
term private key and the ephemeral private key of agent X ∈
agent. Let psk be the pre-shared key between I and R and
let pre be the pre-computation described in Section IV-C. We
define the set data as the set of data subject to a compromise
in our model, that is, long term keys, ephemeral keys, pre-
shared key and pre-computation. Thus, let d ∈ data. We
consider three kind of d compromise in our model. Rd refers
to the case when d is generated or computed honestly yet it is
revealed to the adversary. Md refers to when d is generated or
modified and Dd refers to a dishonest distribution of d when
d is a long term public key. Compromises can occur any time

during protocol execution. For example, RltkX represents the
private long term key reveal of the agent X . This compromise
may appear too strong but the intuition is that a protocol
may still function as long as the long term key of the other
partner is not revealed. The same argument applies to all
other data compromise. Compromise can also occur at the
end of the protocol. For this type of compromise, we only
consider a reveal-type compromise and we refer to it as R∗

d

for relevant data d. Let A be the set of all atomic adversarial
capabilities. Our adversary model involves the largest set of
atomic compromise for all data in data combined with the
Dolev-Yao’s adversarial capabilities [20].

B. Our Methodology

We evaluate security properties with regard to adversarial
compromise. Our final results are of the form property is
guaranteed unless the adversary compromises X1 or X2

or ... where property is a security property and Xi is a
set of data included in data. We search for necessary and
sufficient conditions of adversarial compromise under which
each security property is violated.

We begin with searching for necessary conditions of com-
promise under which the property is no longer verified. To
motivate our formulation, let us first consider agreement prop-
erties. Agreement or authentication properties can be captured
using correspondence assertions in SAPIC+ and have the
following structure: ”on every execution trace of the protocol,
the event e1 is preceded by the event e2”. Let Pa be an
agreement property which can be expressed as e1 =⇒ e2
and let C ∈ A. If e1 =⇒ e2 is false and e1 =⇒ (e2 or C)
is true considering our adversary model, this means that on
every execution trace of the protocol either Pa is verified or the
adversary has the atomic capability C that breaks this property,
that is C is a necessary condition for which the property Pa

is violated. We test all possible combinations of adversarial
compromise present in our adversary model and we compute
sufficient combinations among all the necessary combinations
for which the property is not true. For example, if we suppose
that our adversary model is the combination of RltkI , Rpsk

and the standard Dolev-Yao’s adversarial capabilities and if
we obtain the following results for the property Pa, then the
second result implies the fourth one, in:

• e1 =⇒ e2 is false
• e1 =⇒ (e2 or Rpsk) is true
• e1 =⇒ (e2 or RltkI) is false
• e1 =⇒ (e2 or Rpsk or RltkI) is true.
In this adversary model, we conclude that psk reveal is a

necessary and sufficient condition for which the property Pa

is violated and we state that property Pa is guaranteed unless
psk is revealed to the adversary.

VI. ANALYSIS OF WIREGUARD WITH SAPIC+

We consider 34 security properties; 4 agreement properties:
agreement of RecHello message (from Responder to Initia-
tor), agreement of first TransData message (from Initiator to
Responder), agreement of next TransData messages (from
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Initiator to Responder and from Responder to Initiator); 12
secrecy properties: secrecy and PFS of session key before
derivation (named k6 in protocol description), from Initiator’s
and Responder’s view, secrecy and PFS of derivated keys
(named Ci and Cr), from Initiator’s and Responder’s view;
anonymity, for WireGuard with or without cookies.

For each property, for each protocol version (with or without
cookies), our adversary model implies up to 221 = 2097152
cases of key compromises, as adversary can:

• Read Initiator (resp. Responder) static private key u
(resp. v), Initiator (resp. Responder) ephemeral private
key x (resp. y), pre-shared key psk, ecdh pre-computation
before protocol execution (26 cases).

• Read Initiator (resp. Responder) static private key u (resp.
v), Initiator (resp. Responder) ephemeral private key x
(resp. y), pre-shared key psk, ecdh pre-computation after
protocol execution (26 cases).

• Modify Initiator (resp. Responder) static private key u
(resp. v), Initiator (resp. Responder) ephemeral private
key x (resp. y), pre-shared key psk, ecdh pre-computation
for Initiator or Responder (27 cases).

• Modify Initiator’s static public key U (resp. Responder
static public key V ) distribution (22 cases).

We describe here our methodology, depicted in Fig.7, for
WireGuard without cookie, the same applies for version of
WireGuard with cookies. Our main idea is to capture key
modification and key distribution modification through dif-
ferent models and key reveal through queries. This allows
to drastically decrease the number of resolutions. Then we
proceed the same way as in [34]: we use SAPIC+ to generate
all PROVERIF files, which model all cases, we keep all queries
that are satisfied (✓) and combine them (this combination is
explained below, it is based on Conjunctive Normal Form and
Disjunctive Normal Form computation). From this combina-
tion, we deduce a single lemma that we finally assess with
TAMARIN, in one file generated with SAPIC+.

29 models26 queries

4860 queries

PROVERIF ✓✗

CNF

DNF

1 lemma

TAMARIN ✓SAPIC+

Fig. 7: Methodology.

We consider a first set of adversarial capabilities: key reveal
before protocol execution (26 cases), key modifications (27

cases) and key distribution modifications (22 cases). This set
is used to assess all agreement and secrecy properties.

Then we consider a second set: key reveal after protocol
execution for static keys and pre-shared key (with key reveal
before protocol for other keys), key distribution modifications
(22 cases). This allows to capture precisely Perfect Forward

Secrecy (PFS) and also current WireGuard implementation,
where a single configuration file contains both private static
key and pre-shared key.

Finally, we consider anonymity for key reveal, which we
do not combine with key modification nor key distribution
modification.

A. Agreement, Secrecy and Perfect Forward Secrecy

We model agreement as trace property for RecHello mes-
sage, first TransData message from Initiator to Responder
and next TransData messages which can be either from
Initiator to Responder or from Responder to Initiator. We
model the strongest notion: if a message has been received
by a peer, then it must have been sent by the other peer. With
notations from Section III-A, we model key secrecy as trace
property for keys k6, C

i, Cr, from Initiator’s and Responder’s
views.

For these properties, we start with a reference model,
of which an extract is depicted in Fig.8 (up left). In this
reference model, keys generated in the main process are:
Initiator and Responder static private keys, (˜ltkI, ˜ltkR)
and pre-shared key (˜psk). Keys are passed as arguments to
two sub processes, Initiator and Responder. Process
Initiator has arguments ˜ltkI (its own static private
key), pkI = ’g’ˆ˜ltkI (its own static public key), pkR =
’g’ˆ˜ltkR (Responder static public key), ˜psk (pre-shared
key), empty (a public term used in WireGuard RecHello
message, ’zero_1’ (a public term used to model counter
used in TransData messages). Responder has similar argu-
ments. Initiator generates its ephemeral private key (˜ekI),
Responder also (˜ekR). Five processes model key compro-
mise: RevealPsk for pre-shared key, RevealLtki and
RevealLtkr for static keys and RevealPre for pre-
computation, RevealEki and RevealEkr for ephemeral
keys. Initiator and Responder processes are called in paral-
lel with these compromise processes and replicated. Inside
Initiator and Responder processes, computation is parallel
to compromise of ephemeral private key. Fig.8 (up right)
describes how a model is derived from reference model on
a sample: Adversary can modify pre-shared key psk, Initiator
and Responder ephemeral keys x and y. In derived model, in-
structions new ˜psk, new ˜ekI and new ˜ekR are replaced
by in(˜psk), in(˜ekI) and in(˜ekR), respectively. Fur-
thermore, as adversary sets these values, assessing their access
is not necessary, hence instructions (RevealPsk(˜psk)),
(RevealEki(˜ekI)) and (RevealEkr(˜ekR)) are re-
moved. This allows to define 29 models. Fig.8 (bottom)
describes how queries are derived: key combinations are added
in the query as disjunctions. This allows to define up to
26 queries. Finally, for each derived model, we keep only
the necessary queries, involving keys that adversary does not
modify. For each agreement and secrecy properties, we obtain
a set of 4860 queries to evaluate.

For PFS properties, the methodology is the same.
In addition, to capture temporal key compromise, we
use the notion of phase in the generated PROVERIF
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Reference process
... new ˜ltkI;new ˜ltkR;new ˜psk;new empty;
out(<’initiator’,’g’ˆ˜ltkI>); out(<’responder’,’g’ˆ˜ltkR>);

( (! Initiator(˜ltkI, ’g’ˆ˜ltkI, ’g’ˆ˜ltkR, ˜psk, ...))
| (! Responder(˜ltkR, ’g’ˆ˜ltkI, ’g’ˆ˜ltkR, ˜psk, ...))
| RevealPsk(˜psk)
| RevealLtki(˜ltkI)
| RevealLtkr(˜ltkR) | RevealPre(˜ltkI, ˜ltkR) )

let Initiator(˜ltkI, pkI, pkR, ˜psk, ...) =
... new ˜ekI; ... let pekI = ’g’ˆ˜ekI in
(...) | (RevealEki(˜ekI))

let Responder(˜ltkR, pkI, pkR, ˜psk, ...) =
... new ˜ekR; ... let pekR = ’g’ˆ˜ekR in
(...) | (RevealEkr(˜ekR)) ...

Adversary sets x and y and psk
... new ˜ltkI; new ˜ltkR;in(˜psk);new empty;
out(<’initiator’,’g’ˆ˜ltkI>); out(<’responder’,’g’ˆ˜ltkR>);

( (! Initiator(˜ltkI, ’g’ˆ˜ltkI, ’g’ˆ˜ltkR, ˜psk, ...))
| (! Responder(˜ltkR, ’g’ˆ˜ltkI, ’g’ˆ˜ltkR, ˜psk, ...))
// | RevealPsk(˜psk)
| RevealLtki(˜ltkI)
| RevealLtkr(˜ltkR) | RevealPre(˜ltkI, ˜ltkR) )

let Initiator(˜ltkI, pkI, pkR, ˜psk, ...) =
... in(˜ekI); ... let pekI = ’g’ˆ˜ekI in
(...) // | (RevealEki(˜ekI))

let Responder(˜ltkR, pkI, pkR, ˜psk, ...) =
... in(˜ekR); ... let pekR = ’g’ˆ˜ekR in
(...) // | (RevealEkr(˜ekR)) ...

query i:time,j:time, pki:bitstring, pkr:bitstring, peki:bitstring, pekr:bitstring, psk:bitstring, ck:bitstring;
(event(eRConfirm(pki, pkr, peki, pekr, psk, ck))@i) ==> (((event(eIConfirm(pki, pkr, peki, pekr, psk, ck))@j) && (j < i)))
...
query i:time,j:time, pki:bitstring, pkr:bitstring, peki:bitstring, pekr:bitstring, psk:bitstring, ck:bitstring,
j1:time, j2:time, j3:time, j4:time, j5:time, j6:time;
(event(eRConfirm(pki, pkr, peki, pekr, psk, ck))@i) ==> (((event(eIConfirm(pki, pkr, peki, pekr, psk, ck))@j) && (j < i))
||((event(eRevPri(pki))@j1) && (j1 < i)) || ((event(eRevPri(pkr))@j2) && (j2 < i))
||((event(eRevPri(peki))@j3) && (j3 < i)) || ((event(eRevPri(pekr))@j4) && (j4 < i))
||((event(eRevPre(pki, pkr))@j5) && (j5 < i)) || ((event(eRevPsk(psk))@j6) && (j6 < i))).

Queries

Fig. 8: SAPIC+ Processes and Queries, where blue bold denotes differences between reference process and modified process.

files: (RevealPsk(˜psk)) is replaced with (phase 1:
RevealPsk(˜psk)). We add the same modification for
RevealLtki and RevealLtkr. In PROVERIF, phase 0
denotes protocol execution and phase 1 allows to set key
compromise after protocol execution. For each PFS properties,
we obtain a set of 64 queries to evaluate.

Once all queries are assessed, we obtain a set of results that
we need to combine. We process them in a manner similar to
the one used in [30]. In this aim, we use symbols to model
key compromise:

• Rx (resp. Ry) Initiator’s (resp. Responder’s) ephemeral
key is revealed, Mx (resp. My) Initiator’s (resp. Respon-
der’s) ephemeral key is modified.

• Ru (resp. Rv) Initiator’s (resp. Responder’s) static key
is revealed, Mu (resp. Mv Initiator’s (resp. Responder’s)
static key is modified. R∗

u (resp. R∗
v) Initiator’s (resp. Re-

sponder’s) static key is revealed after protocol execution.
• Rs pre-shared key is revealed, Ms, modified. R∗

s pre-
shared key is revealed after protocol execution.

• Rc pre-computation is revealed, Mi (resp. Mr) Initiator’s
(resp. Responder’s) pre-computation is modified.

• Du (resp. Dv) Initiator’s (resp. Responder’s) static key is
compromised during initial distribution.

With these symbols, the set of all 29 models corresponds
to the conjunction:

∧
α∈{u,v,x,y,s,i,r} Mα

∧
β∈{u,v} Dβ . Sim-

ilarly, the set of all 26 queries corresponds to the disjunc-
tion:

∨
γ∈{u,v,x,y,c,s} Rγ . Similarly, for PFS, a smaller num-

ber of models and queries is involved:
∧

β∈{u,v} Dβ and∨
γ∈{u,v,s} R

∗
γ .

Note that this set of compromises is similar to the one
in [30], with two exceptions: we model pre-computation com-
promise and [30] gathers Du and Dv in a single compromise
named Dpki (which models ”key distribution is compro-
mised”). After assessment with PROVERIF, we consider all

queries which are proven true in the model. To illustrate,
consider the model Ms ∧Mx, where adversary can set pre-
shared key and Initiator private ephemeral key. For agreement
of third message, in this model, there are 5 disjunctions
that correspond to true queries (among 16): Ru ∨ Rv ∨ Ry ,
Ru∨Rv∨Rc, Ru∨Ry∨Rc, Ru∨Rv∨Ry∨Rc, Ru∨Ry . We
then compute the conjunction Ms∧Mx∧(Ru∨Rv∨Ry)∧(Ru∨
Rv∨Rc)∧(Ru∨Ry∨Rc)∧(Ru∨Rv∨Ry∨Rc)∧(Ru∨Ry) and
we reduce it to its Conjunctive Normal Form (CNF), equal to
Ms∧Mx∧ (Ru∨Rv)∧ (Ru∨Rv ∨Rc) and to its Disjunctive
Normal Form (DNF), equal to (Ms∧Mx∧Ru)∨ (Ms∧Mx∧
Rc ∧Ry) ∨ (Ms ∧Mx ∧Rv ∧Ry).

We repeat this process for all models and once all models
are evaluated, we obtain a set of 29 CNFs and DNFs: each
DNF gives an interpretation at model level and all CNFs
considered together provide a result for the evaluated security
property. To this aim, we compute the disjunction of all CNFs
and the DNF of the result, which gives us an interpretable
result, at property level. This final result is comparable with re-
sults from previous analyses. Obtained DNFs, labeled DNFx,
are detailed in Table II. We also compute a simplified version
of these DNFs as some compromises are implied by others.
These simplified DNF are labeled DNFx⋆. At last step, we
translate DNFx⋆ to a lemma that we assess with TAMARIN.
Note that DNFx⋆ show security properties are all breakable
with read access to cryptographic keys, as key modification
is not involved. Results for versions of WireGuard with or
without cookies are the same.

Results. DNF for agreement of RecHello and transport
message from Responder to Initiator are equal (DNF1 and
simplified version DNF1⋆) and DNF for agreement of first
and second TransData message, from Initiator to Respon-
der, are equal (DNF2 and simplified version DNF2⋆). For
secrecy, DNFs contains key compromises for two phases, as

10



G,u∗,U∗ = gu∗ , V, x,X = gx, ts, psk G, v, V = gv,U1,U2, y, Y = gy, psk

[1∥03∥si∥X∥{U}∥{ts}∥maci1∥016]

[2∥03∥sr∥si∥Y ∥{∅}∥macr1∥016]

mac(h(M, U1), [2∥ · · · ∥{∅}])
?
= macr1mac(h(M, U1), [2∥ · · · ∥{∅}])
?
= macr1mac(h(M, U1), [2∥ · · · ∥{∅}])
?
= macr1

mac(h(M, U2), [2∥ · · · ∥{∅}])
?
= macr1mac(h(M, U2), [2∥ · · · ∥{∅}])
?
= macr1mac(h(M, U2), [2∥ · · · ∥{∅}])
?
= macr1

Fig. 9: Attack against Anonymity, where blue bold de-
notes attacker computation: attacker captures mac1 field from
RecHello message, then compares with two possible values,
computed with public keys U1 and U2.

we model static keys (u and v) and pre-shared key leakage
first during protocol execution, then after protocol execution,
to capture perfect forward secrecy. To distinguish these two
compromises, the first refers to Ru, Rv and Rs while the later
refers to R∗

u, R
∗
v and R∗

s : DNF for secrecy of k6, Ci, Cr from
Initiator’s view are all equal (DNF3 and simplified version
DNF3⋆); DNF for secrecy of k6, C

i, Cr from Responder’s
view are all equal (DNF4 and simplified version DNF4⋆).

Our result show that for DNF1, ephemeral key y (from
Responder) does not appear, whereas ephemeral key x (from
Initiator) appears. This is due to our model as we only
considers active adversary: compromise (Rs ∧Rv ∧Ry) also
breaks the property, but for DNF computation, (Rs ∧ Rv ∧
Ry)∨(Rs∧Rv) simplifies to (Rs∧Rv). Hence if adversary is
active and has compromised Responder’s static key v and pre-
shared key, then adversary can generate its own ephemeral key
and send messages to Initiator, while if adversary is passive,
adversary needs to compromise all keys from Responder to
break security property. The same analysis holds for DNF2.

B. Anonymity

We model anonymity with observational equivalence in
the following context: two Initiators, of public keys U1

and U2, can establish a WireGuard session with a common
Responder, of public key V . The property is satisfied if
an adversary, which has access to these public keys and
to exchanged messages, cannot assess which Initiator has
established a session. We found that, as opposed to initial
claims of original specification [21] and to symbolic analysis
with TAMARIN [23], and in accordance with computational
analysis with CRYPTOVERIF [42], this property is not sat-
isfied: Fig.9 depicts an attack against anonymity, identified
on our model with SAPIC+ prover. An Initiator, of public
key U∗ ∈ (U1, U2), establishes a session with Responder.
They exchange a RecHello message whose 7th field equals
mac(h(M, U∗), [2 ∥ · · · ∥ {∅}]), where [2 ∥ · · · ∥ {∅}] are the
first 6 fields of RecHello message and M is a public con-
stant. Adversary, which knows U1 and U2, can then compute
mac(h(M, U1), [2 ∥ · · · ∥ {∅}]) and mac(h(M, U2), [2 ∥ · · · ∥
{∅}]) and assess which public key U1 or U2 has been used in
message authentication code by comparison with transmitted
value mac(h(M, U∗), [2 ∥ · · · ∥ {∅}]). Finally, adversary can
distinguish between the two Initiators.

Anonymity in previous analyses. Analysis from [23]
proposes a proof with TAMARIN prover of a property named
identity hiding, modeled as a trace property. As noticed in Sec-
tion IV-B, it does not include compliant message authentica-
tion codes in InitHello and RecHello messages. Result
from this analysis can be adapted with symbols from Sec-
tion VI-A: identity hiding has DNF Ru ∨Rv ∨Rx. Similarly,
analysis from [30] models and proves anonymity for IKpsk2
with observational equivalence with TAMARIN prover. We can
adapt its results with symbols from Section VI-A: anonymity
for Initiator has DNF Rv ∨Ru and anonymity for Responder
has DNF Rv ∨ Ru. Finally, analysis from [42] describes the
same attack as the one we identified and propose a proof of
identity hiding property with CRYPTOVERIF prover of the pro-
tocol, without message authentication codes in InitHello
and RecHello messages. The property is however different
as ours it is modeled as a secrecy property. We can adapt its
result as before: this property has DNF Ry . These three results
cannot directly apply to WireGuard as all do not consider
message authentication codes in the two first messages, which
is exactly the reasons why adversary can break anonymity.

Proposed fixes. We propose original fixes that ensure
anonymity and does not change messages content. For this,
we remark that message authentication codes in InitHello
and RecHello messages only involve as keys data poten-
tially known by an adversary: public value M and public
keys of Initiator and Responder, hence allowing to attack
anonymity, as these authentication codes leak used public key.
To counter this attack, we propose a modification of message
authentication code computation to ensure the key for message
authentication code is only known by Initiator and Responder.
For this, we propose to use as key for message authentication
code in RecHello message either the value h(U∥guv) or
the value h(U∥psk) (instead of the value h(M∥U) currently
used). We modeled the modified protocol and anonymity with
observational equivalence in the same context as before. Our
modified protocol reaches anonymity and we computed the
associated DNF. For message authentication key h(U∥guv),
DNF is Ru ∨ Rv ∨ Rx ∨ Rc; for message authentication
key h(U∥psk), DNF is Rv ∨ Rs ∨ Rx. We finally remark
that we could complete results from [30]: removing mac
computations from InitHello and RecHello messages
leads to a key exchange close to IKpsk2. We also verified
that this other protocol modification reaches anonymity, with
DNF Ru ∨Rv ∨Rx ∨Rc.

C. Performances

We evaluated our models on a dedicated server, equipped
with 256 cores of CPU 1.5 GHz, on which we ran in parallel
all PROVERIF queries. Agreement, secrecy and PFS are veri-
fied with PROVERIF in around 15 minutes (for each property)
and anonymity is verified with PROVERIF in around 9 hours
for fix based on guv and 2 hours for fix based on psk. We tested
our result for trace properties (agreement, secrecy, PFS) with
a lemma in TAMARIN for a full version of the protocol and
TAMARIN confirmed properties are satisfied in around 5 hours.
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Results Properties: RecHello agreement, Next TransData (R to I).
[35] (Rs ∧Rv) (for IKpsk2 with PROVERIF)
[23] (Rs ∧Rv) ∨ (Rs ∧Ru ∧Rx) (for WireGuard with TAMARIN)
[30] (Dv ∧Rs) ∨ (Ms ∧Rv) ∨ (Mv ∧Rs) ∨ (Rs ∧Rv) ∨ (Rs ∧Ru ∧Rx) (for IKpsk2 with TAMARIN)
DNF1 (Dv ∧Ms) ∨ (Dv ∧Rs) ∨ (Ms ∧Mv) ∨ (Ms ∧Rv) ∨ (Mv ∧Rs) ∨ (Rs ∧Rv) ∨ (Mi ∧Ms ∧Mx) ∨ (Mi ∧Ms ∧Rx)

∨(Mi ∧Mx ∧Rs) ∨ (Mi ∧Rs ∧Rx) ∨ (Mr ∧Ms ∧Mx) ∨ (Mr ∧Ms ∧Rx) ∨ (Mr ∧Mx ∧Rs) ∨ (Mr ∧Rs ∧Rx)

∨(Ms ∧Mu ∧Mx) ∨ (Ms ∧Mu ∧Rx) ∨ (Ms ∧Mx ∧Rc) ∨ (Ms ∧Mx ∧Ru) ∨ (Ms ∧Rc ∧Rx) ∨ (Ms ∧Ru ∧Rx)

∨(Mu ∧Mx ∧Rs) ∨ (Mu ∧Rs ∧Rx) ∨ (Mx ∧Rc ∧Rs) ∨ (Mx ∧Rs ∧Ru) ∨ (Rc ∧Rs ∧Rx) ∨ (Rs ∧Ru ∧Rx)

DNF1⋆ (Dv ∧Rs) ∨ (Rs ∧Rv) ∨ (Rc ∧Rs ∧Rx) ∨ (Rs ∧Ru ∧Rx)

Results Properties: First TransData agreement, Next TransData (I to R).
[35] (Rs ∧Ru) (for IKpsk2 with PROVERIF)
[23] (Rs ∧Ru) ∨ (Rs ∧Rv ∧Ry) (for WireGuard with TAMARIN)
[30] (Ms ∧Ru) ∨ (Mu ∧Rs) ∨ (Rs ∧Ru) ∨ (Rs ∧Rv ∧Ry) (for IKpsk2 with TAMARIN)
DNF2 (Du ∧Ms) ∨ (Du ∧Rs) ∨ (Ms ∧Mu) ∨ (Ms ∧Ru) ∨ (Mu ∧Rs) ∨ (Rs ∧Ru) ∨ (Mi ∧Ms ∧My) ∨ (Mi ∧Ms ∧Ry)

∨(Mi ∧My ∧Rs) ∨ (Mi ∧Rs ∧Ry) ∨ (Mr ∧Ms ∧My) ∨ (Mr ∧Ms ∧Ry) ∨ (Mr ∧My ∧Rs) ∨ (Mr ∧Rs ∧Ry)

∨(Ms ∧Mv ∧My) ∨ (Ms ∧Mv ∧Ry) ∨ (Ms ∧My ∧Rc) ∨ (Ms ∧My ∧Rv) ∨ (Ms ∧Rc ∧Ry) ∨ (Ms ∧Rv ∧Ry)

∨(Mv ∧My ∧Rs) ∨ (Mv ∧Rs ∧Ry) ∨ (My ∧Rc ∧Rs) ∨ (My ∧Rs ∧Rv) ∨ (Rc ∧Rs ∧Ry) ∨ (Rs ∧Rv ∧Ry)

DNF2⋆ (Du ∧Rs) ∨ (Rs ∧Ru) ∨ (Rc ∧Rs ∧Ry) ∨ (Rs ∧Rv ∧Ry)

Results Properties: Secrecy of k6, Ci, Cr from Initiator’s view, including PFS.
DNF3 (Dv ∧Ms) ∨ (Dv ∧Rs) ∨ (Ms ∧Mv) ∨ (Ms ∧Rv) ∨ (Mv ∧Rs) ∨ (Rs ∧Rv) ∨ (Mi ∧Ms ∧Mx) ∨ (Mi ∧Ms ∧Rx)

∨(Mi ∧Mx ∧Rs) ∨ (Mi ∧Rs ∧Rx) ∨ (Mr ∧Ms ∧Mx) ∨ (Mr ∧Ms ∧Rx) ∨ (Mr ∧Mx ∧Rs) ∨ (Mr ∧Rs ∧Rx)

∨(Ms ∧Mu ∧Mx) ∨ (Ms ∧Mu ∧Rx) ∨ (Ms ∧Mx ∧Rc) ∨ (Ms ∧Mx ∧Ru) ∨ (Ms ∧Rc ∧Rx) ∨ (Ms ∧Ru ∧Rx)

∨(Mu ∧Mx ∧Rs) ∨ (Mu ∧Rs ∧Rx) ∨ (Mx ∧Rc ∧Rs) ∨ (Mx ∧Rs ∧Ru) ∨ (Rc ∧Rs ∧Rx) ∨ (Rs ∧Ru ∧Rx)

∨(R∗
s ∧R∗

u ∧Rx) ∨ (R∗
s ∧R∗

v ∧Ry) ∨ (R∗
c ∧R∗

s ∧Rx ∧Ry)

DNF3⋆ (Dv ∧Rs) ∨ (Rs ∧Rv) ∨ (Rc ∧Rs ∧Rx) ∨ (Rs ∧Ru ∧Rx) ∨ (R∗
s ∧R∗

u ∧Rx) ∨ (R∗
s ∧R∗

v ∧Ry) ∨ (R∗
c ∧R∗

s ∧Rx ∧Ry)

Results Properties: Secrecy of k6, Ci, Cr from Responder’s view, including PFS.
DNF4 (Du ∧Ms) ∨ (Du ∧Rs) ∨ (Ms ∧Mu) ∨ (Ms ∧Ru) ∨ (Mu ∧Rs) ∨ (Rs ∧Ru) ∨ (Mi ∧Ms ∧My) ∨ (Mi ∧Ms ∧Ry)

∨(Mi ∧My ∧Rs) ∨ (Mi ∧Rs ∧Ry) ∨ (Mr ∧Ms ∧My) ∨ (Mr ∧Ms ∧Ry) ∨ (Mr ∧My ∧Rs) ∨ (Mr ∧Rs ∧Ry)

∨(Ms ∧Mv ∧My) ∨ (Ms ∧Mv ∧Ry) ∨ (Ms ∧My ∧Rc) ∨ (Ms ∧My ∧Rv) ∨ (Ms ∧Rc ∧Ry) ∨ (Ms ∧Rv ∧Ry)

∨(Mv ∧My ∧Rs) ∨ (Mv ∧Rs ∧Ry) ∨ (My ∧Rc ∧Rs) ∨ (My ∧Rs ∧Rv) ∨ (Rc ∧Rs ∧Ry) ∨ (Rs ∧Rv ∧Ry)

∨(R∗
s ∧R∗

u ∧Rx) ∨ (R∗
s ∧R∗

v ∧Ry) ∨ (R∗
c ∧R∗

s ∧Rx ∧Ry)

DNF4⋆ (Du ∧Rs) ∨ (Rs ∧Ru) ∨ (Rc ∧Rs ∧Ry) ∨ (Rs ∧Rv ∧Ry) ∨ (R∗
s ∧R∗

u ∧Rx) ∨ (R∗
s ∧R∗

v ∧Ry) ∨ (R∗
c ∧R∗

s ∧Rx ∧Ry)

TABLE II: Computed DNFs for WireGuard and comparisons with results from [35], [23] and [30] for agreement properties
(secrecy properties are not directly comparable and anonymity is not reached for WireGuard).

Regarding anonymity, it is important to note that SAPIC+ does
not currently provide support for the translation of equivalence
properties into TAMARIN.

D. Comparison with Previous Analyses

We compare our results with symbolic results on Wire-
Guard [23] and on IKpsk2 ( [35] and [30]). In addition to
ecdh pre-computation, we give here other insights.

Comparison with [23]. This analysis only assesses one
specific case, for which the evaluated property is satisfied.
Adapting its results with our notations, these are: agreement on
RecHello holds unless (Rs∧ (Rv ∨ (Ru∧Rx))), agreement
on first TransData message holds unless (Rs∧(Ru∨(Rv∧
Ry))), secrecy holds unless (Rs ∧ ((Ru ∧Rx) ∨ (Rv ∧Ry)),
weak PFS holds unless (R∗

s ∧ ((R∗
u ∧ Rx) ∨ (R∗

v ∧ Ry)).
For secrecy, the modeled property is different to ours as it is
conditioned on agreement: if Initiator and Responder agrees
upon a key, then this key shall be secret, while we model
secrecy of key on both Initiator and Responder’s view. We
compute DNFs for agreement results of [23], and compare
them in Table II: our results extend them. For secrecy, results

are not directly comparable as modeled properties are differ-
ent, however we note that (R∗

s ∧ ((R∗
u∧Rx)∨ (R∗

v ∧Ry)) has
DNF (R∗

s∧R∗
u∧Rx)∨(R∗

s∧R∗
v∧Ry), which is a combination

we capture in our results.
Comparison with [35]. This analysis also assesses one

specific key compromise scenario, for IKpsk2, for which
the evaluated property is satisfied. Adapting these results
with our notations, these are: agreement on second message
holds unless (Rs∧Rv), agreement on transport message from
Initiator to Responder holds unless (Rs ∧Ru), agreement on
transport message from Responder to Initiator holds unless
(Rs∧Rv). For secrecy, the modeled property is different than
ours as it concerns PFS of payloads (and not secrecy of keys).
With our notations, obtained results are: PFS of payload of
second message and of transport message from Responder to
Initiator holds unless (R∗

s ∧R∗
u), PFS of payload of transport

message from Initiator to Responder holds unless (R∗
s ∧R∗

v).
We confirm these results related to agreement and secrecy,

Comparison with [30]. As explained in Section IV-A, this
analysis assesses all possible key compromises and results
are already DNFs for each property. Adapting these results
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with our notations, these can be summarized as follows (note
that [30] does not distinguish which key is compromised dur-
ing distribution, but refers to one global compromise termed
Dpki, furthermore, active refers to an active adversary):

• Agreement on second message and on transport message
from Responder to Initiator hold unless (active ∧ Ry ∧
Rv ∧Rs)∨ (active∧Rx ∧Ru ∧Rs)∨ (My ∧Rv ∧Rs)∨
(Mv ∧Dpki ∧Ry ∧Rs) ∨ (My ∧Mv ∧Dpki ∧Rs).

• Agreement on first TransData message from Initiator
to Responder holds unless (active ∧Rx ∧Ru ∧Rpsk) ∨
(active∧Ry ∧Rv ∧Rpsk)∨ (Dx ∧Ru ∧Rpsk)∨ (Du ∧
Rx ∧Rpsk) ∨ (Dx ∧Du ∧Rpsk).

Hence, agreement of second message and transport message
from Responder to Initiator relies on conjunction (My ∧Mv ∧
Dpki∧Rc

s), which is captured in our results through a simpler
conjunction (Dv∧Rs). Term Dpki however does not appear in
DNF of agreement of first transport message, while conjunc-
tion (Du∧Rs) appears in our results. Furthermore, our model
only considers active adversary, hence simplifications occur in
DNFs: e.g for DNF1, (Ms ∧ Rv) ∨ (Mv ∧ Rs) ∨ (Rs ∧ Rv)
corresponds to (active∧Rc

y∧Rc
v∧Rc

s) in [30] (same approach
for DNF2). For secrecy, as for [35], the modeled property is
different than ours as it concern secrecy and PFS of payloads
(and not secrecy of keys), [30] obtains:

• Secrecy and PFS of payload of second message and
of transport messages from Initiator’s view holds unless
(Ry ∧R∗

v ∧R∗
s) ∨ (Rx ∧R∗

u ∧R∗
s) ∨ (My ∧Ry ∧Rs) ∨

(Mv ∧Dpki ∧Ry ∧Rs) ∨ (My ∧Mv ∧Dpki ∧Rs).
• Secrecy and PFS of payload of second message and of

transport messages from Responder’s view holds unless
(Rx ∧R∗

u ∧R∗
s) ∨ (Ry ∧R∗

v ∧R∗
s) ∨ (Dx ∧Ru ∧Rs) ∨

(Du ∧Rx ∧Rs) ∨ (Dx ∧Du ∧Rs).
The difference for secrecy is the same as for agreement:
simplification due to DNFs computation and refinement on
key distribution compromise.

E. Results Interpretation

Our results show message agreement and key secrecy
are reached whereas anonymity cannot currently be reached.
Below we propose recommendations, one is structural as it
implies a protocol modification, the two others are aimed at
WireGuard users, in particular against active adversaries.

Importance of ecdh pre-computations. We include ecdh
pre-computation in our analysis as current implementations
propose it as optimization when InitHello messages are
received: we estimate it gives a new attack path for an
adversary, e.g when Yubikeys are used to protect static keys.
Now DNF1⋆ in Table II contains combinations (Rc ∧ Rs ∧
Rx) ∨ (Ru ∧ Rs ∧ Rx) and DNF2⋆ contains combinations
(Rc∧Rs∧Ry)∨(Rv∧Rs∧Ry): these mean that an adversary
with access to ecdh pre-computation has the same power than
an adversary with access to static private key. As explained in
Section IV-C, this contradicts ecdh property as adversary with
access to pre-computation shall not be so powerful. We there-
fore recommend to remove this implementation optimization
and to compute ecdh at InitHello reception.

Anonymity We proved that including guv or psk in key
for message authentication code guarantees this property is
reached, hence we recommend to update computation in this
direction. Note that this implies that at InitHello reception,
order of operation shall be adapted : currently at InitHello
reception, authentication code is checked, then {U} is de-
crypted, then U is checked. With our proposed fix based on
guv , order of operations at InitHello reception shall be:
{U} is decrypted, then U is checked, then authentication code
is checked.

Importance of pre-shared key psk. As we consider active
adversary, DNF1 and DNF2 both contain combinations with
two keys: (Dv∧Rs)∨(Ms∧Rv)∨(Mv∧Rs)∨(Rs∧Rv) for
DNF1 and (Du ∧Rs)∨ (Ms ∧Ru)∨ (Mu ∧Rs)∨ (Rs ∧Ru)
for DNF2. All these combinations involve psk which appears
to have an important role against. However, for WireGuard,
psk is optional, hence when psk = ∅, security against an
active adversary only relies on static keys. We recommend
that WireGuard users systematically use a pre-shared key.

Importance of initial key distribution. As opposed to
WireGuard specification, we choose to model compromise of
static public keys distribution, as we estimate this distribution
is an attack path for an adversary. This leads to combinations
(Dv ∧Rs) in DNF1 and DNF4 and (Du ∧Rs) in DNF2 and
DNF3. This shows that the assumption in WireGuard specifi-
cation about initial correct out of band key distribution is a key
factor of WireGuard security and cannot be eluded: WireGuard
is safe as soon as static keys are correctly distributed.

VII. CONCLUSION AND FUTURE WORK

We proposed a unified symbolic analysis of WireGuard and
we give a precise model in SAPIC+ which unifies of all pre-
vious analyses. We also improved the adversary model, with
a more precise adversary that can read or set static, ephemeral
or pre-shared keys, read or set ecdh pre-computations, con-
trol key distribution. This allows us to rediscover an attack
on anonymity shown only in the computational model. We
also demonstrated that ecdh pre-computations could lead to
concrete attacks when static keys are protected in smart card
and we propose original fixes that improves the security of
WireGuard, as these two attacks are mitigated.

Our methodology allowed us to analyze agreement, secrecy,
perfect forward secrecy and anonymity and to rapidly obtain
results that are compact and comparable with other analyses
of the same protocol because we compute DNFs for each
security property. Currently our tool takes as input a model of
WireGuard and queries are named in accordance with events
positioned in WireGuard model, we think it could be adapted
to other protocols.

We used computational analyses to compare modeled proto-
cols and enrich our symbolic model, we did not compare their
results with ours. Although security properties correspond to
a close intuitive idea, their formal definitions differ hence they
are not directly comparable. A future work could be to adapt
our implementation in SAPIC+ for a computational analysis.
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protocol verifiers of the world, unite!” in USENIX Security Symposium
(USENIX Security), 2022, 2022.

[16] V. Cortier and S. Kremer, “Formal Models and Techniques for
Analyzing Security Protocols: A Tutorial,” Foundations and Trends in
Programming Languages, vol. 1, no. 3, p. 117, Sep. 2014. [Online].
Available: https://hal.inria.fr/hal-01090874

[17] C. Cremers, M. Horvat, S. Scott, and T. van der Merwe, “Automated
analysis and verification of TLS 1.3: 0-RTT, resumption and delayed
authentication,” in 2016 IEEE Symposium on Security and Privacy. San
Jose, CA, USA: IEEE Computer Society Press, May 22–26, 2016, pp.
470–485.

[18] C. J. F. Cremers, “Key exchange in IPsec revisited: Formal analysis of
IKEv1 and IKEv2,” in ESORICS 2011: 16th European Symposium on
Research in Computer Security, ser. Lecture Notes in Computer Science,
V. Atluri and C. Dı́az, Eds., vol. 6879. Leuven, Belgium: Springer,
Heidelberg, Germany, Sep. 12–14, 2011, pp. 315–334.

[19] A. Delignat-Lavaud, C. Fournet, M. Kohlweiss, J. Protzenko, A. Rastogi,
N. Swamy, S. Zanella-Béguelin, K. Bhargavan, J. Pan, and J. K.
Zinzindohoue, “Implementing and proving the TLS 1.3 record layer,”
in 2017 IEEE Symposium on Security and Privacy. San Jose, CA,
USA: IEEE Computer Society Press, May 22–26, 2017, pp. 463–482.

[20] D. Dolev and A. Yao, “On the security of public key protocols,” IEEE
Transactions on Information Theory, vol. 29, no. 2, pp. 198–208, 1983.

[21] J. A. Donenfeld, “WireGuard: Next generation kernel network tun-
nel,” in ISOC Network and Distributed System Security Symposium –
NDSS 2017. San Diego, CA, USA: The Internet Society, Feb. 26 –
Mar. 1, 2017.

[22] ——. (2021) Wireguard. https://www.wireguard.com.
[23] J. A. Donenfeld and K. Milner, “Formal verification of the wire-

guard protocol,” https://www.wireguard.com/papers/wireguard-formal-
verification.pdf, 2018.

[24] B. Dowling and K. G. Paterson, “A cryptographic analysis of the
WireGuard protocol,” in ACNS 18: 16th International Conference on
Applied Cryptography and Network Security, ser. Lecture Notes in
Computer Science, B. Preneel and F. Vercauteren, Eds., vol. 10892.
Leuven, Belgium: Springer, Heidelberg, Germany, Jul. 2–4, 2018, pp.
3–21.

[25] B. Dowling, P. Rösler, and J. Schwenk, “Flexible authenticated and con-
fidential channel establishment (fACCE): Analyzing the noise protocol
framework,” in PKC 2020: 23rd International Conference on Theory
and Practice of Public Key Cryptography, Part I, ser. Lecture Notes in
Computer Science, A. Kiayias, M. Kohlweiss, P. Wallden, and V. Zikas,
Eds., vol. 12110. Edinburgh, UK: Springer, Heidelberg, Germany,
May 4–7, 2020, pp. 341–373.

[26] D. Felsch, M. Grothe, J. Schwenk, A. Czubak, and M. Szymanek,
“The dangers of key reuse: Practical attacks on IPsec IKE,” in USENIX
Security 2018: 27th USENIX Security Symposium, W. Enck and A. P.
Felt, Eds. Baltimore, MD, USA: USENIX Association, Aug. 15–17,
2018, pp. 567–583.

[27] M. Fischlin, F. Günther, B. Schmidt, and B. Warinschi, “Key confir-
mation in key exchange: A formal treatment and implications for TLS
1.3,” in 2016 IEEE Symposium on Security and Privacy. San Jose, CA,
USA: IEEE Computer Society Press, May 22–26, 2016, pp. 452–469.

[28] S. Frankel and S. Krishnan, “IP Security (IPsec) and Internet
Key Exchange (IKE) Document Roadmap,” Internet Requests for
Comments, RFC Editor, RFC 6071, February 2011. [Online].
Available: http://www.rfc-editor.org/rfc/rfc6071.txt

[29] S. Gajek, M. Manulis, O. Pereira, A.-R. Sadeghi, and J. Schwenk,
“Universally composable security analysis of TLS,” in ProvSec 2008:
2nd International Conference on Provable Security, ser. Lecture Notes
in Computer Science, J. Baek, F. Bao, K. Chen, and X. Lai, Eds., vol.
5324. Shanghai, China: Springer, Heidelberg, Germany, Oct. 31 –
Nov. 1, 2008, pp. 313–327.

[30] G. Girol, L. Hirschi, R. Sasse, D. Jackson, C. Cremers, and D. A. Basin,
“A spectral analysis of noise: A comprehensive, automated, formal
analysis of Diffie-Hellman protocols,” in USENIX Security 2020: 29th
USENIX Security Symposium, S. Capkun and F. Roesner, Eds. USENIX
Association, Aug. 12–14, 2020, pp. 1857–1874.

[31] “Specifications for the keyed-hash message authentication code,” Na-
tional Institute of Standards and Technology (NIST), FIPS PUB 198,
U.S. Department of Commerce, Mar. 2002.

[32] A. Hülsing, K.-C. Ning, P. Schwabe, F. Weber, and P. R. Zimmermann,
“Post-quantum WireGuard,” in 2021 IEEE Symposium on Security and
Privacy. San Francisco, CA, USA: IEEE Computer Society Press,
May 24–27, 2021, pp. 304–321.

[33] O. Inc. (2021) Openvpn. https://openvpn.net/.
[34] C. Jacomme, E. Klein, S. Kremer, and M. Racouchot, “A comprehensive,

formal and automated analysis of the EDHOC protocol,” in USENIX
Security ’23 - 32nd USENIX Security Symposium, Anaheim, CA,

14



United States, Aug. 2023. [Online]. Available: https://inria.hal.science/
hal-03810102

[35] N. Kobeissi, G. Nicolas, and K. Bhargavan, “Noise explorer: Fully
automated modeling and verification for arbitrary noise protocols,” in
IEEE European Symposium on Security and Privacy, EuroS&P 2019,
Stockholm, Sweden, June 17-19, 2019. IEEE, 2019, pp. 356–370.
[Online]. Available: https://doi.org/10.1109/EuroSP.2019.00034

[36] H. Krawczyk, “SIGMA: The “SIGn-and-MAc” approach to authenti-
cated Diffie-Hellman and its use in the IKE protocols,” in Advances in
Cryptology – CRYPTO 2003, ser. Lecture Notes in Computer Science,
D. Boneh, Ed., vol. 2729. Santa Barbara, CA, USA: Springer,
Heidelberg, Germany, Aug. 17–21, 2003, pp. 400–425.

[37] ——, “Cryptographic extraction and key derivation: The HKDF
scheme,” in Advances in Cryptology – CRYPTO 2010, ser. Lecture Notes
in Computer Science, T. Rabin, Ed., vol. 6223. Santa Barbara, CA,
USA: Springer, Heidelberg, Germany, Aug. 15–19, 2010, pp. 631–648.

[38] A. Langley, M. Hamburg, and S. Turner, “Elliptic Curves for Security,”
Internet Requests for Comments, RFC Editor, RFC 7748, January
2016. [Online]. Available: http://www.rfc-editor.org/rfc/rfc7748.txt

[39] A. Langley and Y. Nir, “ChaCha20 and Poly1305 for IETF Protocols,”
Internet Requests for Comments, RFC Editor, RFC 7539, May 2015.
[Online]. Available: http://www.rfc-editor.org/rfc/rfc7539.txt

[40] X. Li, J. Xu, Z. Zhang, D. Feng, and H. Hu, “Multiple handshakes
security of TLS 1.3 candidates,” in 2016 IEEE Symposium on Security
and Privacy. San Jose, CA, USA: IEEE Computer Society Press,
May 22–26, 2016, pp. 486–505.
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